IS311 Programming Concepts

Abstract Window ToolKkit
(part 1: Drawing Simple Graphics)




Abstract Window Toolkit

he Abstract Window

oolkit (AWT) package

contains all the classes for creating user
interfaces and for painting graphics and images.

A user interface object such as a button or
scrollbar in AWT terminology is called a

component.



Graphics

AANFENUFIUEIUNTDFUATNATINAN

Graphics Juaanadi 1Fdmsunisnanin
ATNANZIUAINLEY 1IBUFUNTIAN )

Color Represent a color

Font Represent a font

FontMetrics Used for determining information

about a font
Image Represent an image



The Java Graphics System

Java provides a set of graphic commands
that allow programmer to:

— Display graphical shapes on the screen
e size shape location are under programmers control

— Display strings
¢ size, font, style are under programmers control
- Display images
— Color these objects
— Move these objects



Coordinate Systems

e Java’s coordinate system is not like the
coordinate system you will use in physics
and general math classes

e The Origin is in the upper left hand corner
e X increases to the right

e Y increases downward

e The dimensional unit is a pixel



Java Graphic Coordinate System

Origin (0,0)



Java Graphic Coordinate System

Each pixel has a coordinate (X,y)

(0,0) (width-1,0)

X

>2

(0,height-1)

(1- WSy [-YIpIM)



EXERCISE

Let width and height be odd. What
are the coordinates of the middle pixel”




SOLUTION
I I I width = 3, height = 3
answer = (1,1)
answer = ((width-1)/2, (height-1)/2)

81NN wazaNNgIRAnTuasaa: azAwIMDE1915?

answer = (Lwidth/2J : Lheight/ZJ)

answer = (width/2,height/2)



10

Geometry

Dimension Used for specifying the size of a rectangle
(width and height)

Insets Used for specifying the insets of a rectangle
(top, left, bottom, and right)

Point Used for specifying a point x, y coordinates.

Polygon  Used for holding an array of points.

Rectangle Used for specifying the location and size of
a rectangle (x, y; width; and height).



11

Drawn and Filled Shapes

e Java lets you draw lines and shapes

e Java shape drawing methods come in two styles
- those where the outline only is shown

« drawShape () draw (shapeClass)
- those where the center is filled
« fillShape() £fill (shapeClass)

e Java provides the ability to display predefined
iImages

e Java provides the ability to display widgets



Displaying Things

e First we need a Graphics context
— That portion of the screen to draw upon

e How do we obtain a graphics context?

- We get one as the argument to paint ()
e Be careful about passing the graphics context around,
— it may not always be 'in context'

e Java is state driven

- Things tend to stay they way they are until they are
changed

e Once we set a color it will stay that way

12



13

Some Graphical things

e Line segments (LaUATY)

e Connected line segments (a1NLEUATNHAYLHUAD
[Hinariu)

e Rectangles (gﬂ?im?iau)

e Ellipse (512493)

e Arcs (11 1A4)

e Rectangles with rounded corners (Snasnyu
NA)

e Polygon (gﬂ‘wmﬂmﬁﬂu)



Drawing Lines

e The 1.1 AWT provides three methods for
drawing lines:

— Straight Line Segments

drawlLine (.. .)

— Connected Line Segments
drawPolyline(...)

— Portions of an Ellipse
drawArc (...)

14



Line Segments

e The command is of the form:

GraphicsObject.drawLine (1nt xStart,
vStart, int xStop, int yStop)

e Draws a line from position point
(xStart, yStart) to (xStop, yStop)

int

15



16

The drawLine method

drawLine is a method of the
Graphics class that draws a line

g i=sm
instance of X coordinate of first point
the Graphics /
class / ¥ coordinate of first point

g.drawline (50, 100, 200, 250);

L

X coordinate of second point

¥ coordinate of second point



Example of drawLine ()

public void palnt( Graphics g ) {
g.drawLine( 10, 10, 50, 30 );

(10,10)

\

(50,30)




18

Drawing and Filling Rectangles

 Drawing Rectangles

void drawRect (int x, // upper left x coordinate
int v, // upper left y coordinate
int width, // bounding box width
int height) // bounding box height

* Draws an outline of a rectangle bounded whose upper left
hand corner 1s defined at the point (x, y), andi1s width

wide, and height tall.

« To draw a solid rectangle we use the £i11Rect () method
with the same arguments



19

The drawRect Method

drawRect is a method of the Graphics
class that draws a rectangle

g iz X coordinate of the
instance of top left corner
the Graphics
class ¥ coordinate of the
/ top left corner

g.drawRect (50, 50, 200, 100);

N

width of the rectangle

height of the rectangle



Example Rectangles

public void paint (Graphics g) {
g.setColor (Color.red);
g.drawRect (10, 20,50, 30) ;

g.setColor (Color.blue);

g

.fillRect (20,30,75,30); € fillRect LANAANIUTLARYN NIAUA
WISIHLADS LAULAYINY drawRect

50 Wide 75 Wide

/
(10,20) /
T [

30 Tall

(20,30) /"’/”/

/




21

Rectangles with Rounded Corners

* We can combine our approach for drawing rectangles
and drawing ellipses into a a shape which 1s a
rectangle with rounded corners or curved ends.

e The Java API command drawRoundRect ()

combines the complexity of rectangles with the
difficulty of ellipses.



22

The drawRoundRect method

void drawRoundRect (int x, // First four
int v, // parameters
int width, //are as in a
int height, // rectangle

int arcWidth,

int arcHeight)
//horizontal and vertical
// ‘diameter’ at the
// at the corners



23

The drawRoundRect method

drawRoundRect is a method of the

Sraphics class that draws a rectangle

with rounded corners
X coordinate of the
top left corner

¥ coordinate of the
g isx top left corner
instance of
the Graphics width of corner rectangle
class /

g.drawRoundRect (50, 50, 200, 100, 8, B);

\

height of the rectangle

height of corner rectangle

width of the rectangle



24

More rounded rectangle stuff

The first four parameters are exactly the same as those for the rectangle.

— If we put zeros in for the last two parameters, you will have a rectangle drawn
exactly as before.

We use the fifth argument in the drawRoundRect () method as we
do the third argument in the drawOval () method.

— This describes the horizontal 'diameter' of the arc.
The sixth argument in the drawRoundRect () method corresponds to
the fourth argument in the drawOval () method.

— This describes the vertical 'diameter' of the arc.

Of course, there 1s a £i11RoundRect() for filling in our rectangle
with a solid color.



Example Rounded Rectangles

public void paint (Graphics g) {
g.setColor (Color.blue);
g.fi111RoundRect (10,20,60,30,5,5);
g.setColor (Color.green) ;
g.fillRoundRect (40,30,60,30,15,15);

:|> g4 30 pixel

| )

|
N4 60 pixel




26

Drawing Ellipses

void drawOval (int x, // upper left x coordinate

int v, // upper left y coordinate
int width, // bounding box width
int height) // bounding box height

* This draws an outline of an ellipse bounded by the
rectangle whose upper left hand corner 1s defined at
the point (x, y), andis width wide, and
height tall.

— Note that the point (x, y) does not actually fall on our
arc.



27

The drawOwval method

drawQOval is a method of the Graphics
class that draws an oval

X coordinate of the
g iz top left corner of the bounding rectangle
instance of
the Graphics ¥ coordinate of the
class / top left corner of the
bounding rectangle

g.drawOval (50, 50, 200, 100):

height of the rectangle

width of the rectangle



Example Ellipses

public void paint (Graphics g) {
g.setColor (Color.red);
g. (10,20,060,30);
g.setColor (Color.green) ;
g. (

(100,20)
drawOval

Width 60 Width 30

£f1110val (100,20,30,30);
} / /

e A

Height 30 _ ]




Circles, & Fills

* The JDK does not provide a method to draw a circle. To
do that we must set our bounding box to be a square,
(the width and the height are the same size).

e To draw a solid, we use the £f1110val () method.
The £i110val () takes exactly the same arguments
as the drawOval () .

29



30

Drawing Arcs

* We can draw smooth curves as a portion of an ellipse

 The drawArc () command draws an arc bounded by the
rectangle whose upper left hand corner i1s defined at the point
(x,v), andiswidth wide, and height tall.

« If we were to draw a complete circle, 1t would touch the
centers (midpoints) of each of the sides of our bonding box.

— However, we define our curve to be drawn from startAngle to an arc
of sweepAngle degrees.



31

Angle Measurements 1n Java

» Angles are measured counter clockwise from the horizontal x axis.
— In Java, 0 degrees is at the 3-o'clock position.

— Positive angles indicate counter-clockwise rotations, negative angles are drawn
clockwise.

120

20

—
A

HHNNIA (sweep angle)
X




The drawArc method

void drawArc (int x, // bounding box, x
// upper left corner
int v, // bounding box, y
// upper left corner
int width, // width of
// bounding box
int height, // height of

// bounding box
int startAngle, // in degrees
int sweepAngle) // extent

§u1Sn by fillArce () t1WBSEUNY L AYI2DNINS LA

32



33

The drawArc method

drawArc is a method of the Graphics
class that draws an arc

X coordinate of the top left
corner of the bounding rectangle
g is ¥ coordinate of the top left
instance of corner of the bounding rectangle
the Graphics
class / Starting angle in degrees

g.drawAre (50, 50, 200, 100, 135, 90);

Angle to traverse

height of the bounding
rectangle

width of the bounding
rectangle



Example drawArc()

public void paint (Graphics qg)
g.drawArc(10,20,30,40,30,80);

(10,20)

AU (Height) voITivagy
AUNA 40 pixel

AMUNIT (Width) yadmae
qUUA 30 pixel

{

YUN31A (Sweep Angle) 80 DIA1

\

S

YUISUAY (Start Angle) 30 DIA




The drawPolyline method

drawPolyline (
int[] xPoints, // array of x values
int[] yPoints, // array of y values

int nPoints // number of points

)

example
int [] xPoints = { 1,2,3,4, 5, 6, 7, 8, 9};
int [] yPoints = { 3,4,5,7,10,15,20,27,35};

g.drawPolyline (xPolints, yPoilnts, xPolnts.length);

35



Polygons

« Like the polyline method, this accepts an array
of x's and y's.

— However, unlike the polyline method, the polygon

will create the line that connects the last point in
polygon to the first point in the polygon.

e Asinthe polyline, you must be certain that the
number of points specified is equal to or smaller
than the smallest number of points in ether of the
arrays.

36



drawPolygon ()

e One form of the drawpoly command:
vold drawPolygon (Polygon p)

» Uses a polygon object:
— We must first create a polygon object: (p, above).

— To do this we would declare and instantiate a polygon:
Polygon p = new Polygon();

— We then add points to the polygon:
p.addPoint (x,Vv) ;

p.translate (dx, dy); #18aA1LAL

37



38

Example Polygon

public void paint (Graphics g) {
Polygon poly = new Polygon (),
poly.addPoint (10,10); poly.addPoint (20,20);
poly.addPoint (30,10); poly.addPoint (10,20);
g.drawPolygon (poly) ;

2:(30,10)

0: (10,10)

3:(10,20)
1: (20,20)




39

The drawString method

void drawString (
String s, // string to be drawn

int x, // base line x coordinate
int vy // base line y coordinate

g.drawString (“Hello World!”, 10, 10);




* Java provides a {]

— We can ¢
— We can ¢

40

Fonts and Strings

nange tl
nange tl

exible system for displaying strings
e type face
e s1ze

— We can ¢

nange fl

e weight or style



Consider the Following

~dtring
/Second String

Base Line



42

Baseline Observations

Notice that nearly all the letters do not extend below an
imaginary line

— except the letter 'g'?
This imaginary line 1s called the base line.

Our reference (anchor) point for a string 1n the y dimension
1s this base line.

— Unlike any of the other graphics objects,
In the x direction, we start the string on the left hand side.




Font Dimensions

A

ee

:l: Leading

43

“Second Str

1ng

Line Height = + Descent + Leading



44

Font Definitions: Ascent

e font ascent: This 1s the distance from the base line to
the top of the letter.

— In our example above, this 1s the distance from bottom to
the top of the letter 'S’

— When we want to know about a specific font, we're
probably interested in the maximum height for all
characters we can display 1n this font, this 1s provided by
the method getMaxAscent().



45

Font Definitions: Decent

 font descent: This 1s the distance below the line to
the bottom of the letter.

— In our example above, this 1s the distance from the bottom
of the 'S' to the bottom of the 'g'.

— As with the ascent, we're probably more interested in the
Maximum Descent.
getMaxDescent()



46

Definitions: Leading & Height

* leading: The distance between base lines 1n strings 1s
called the leading distance.

— In our example above, this 1s the distance between the
bottom of the 'g' and the top of the 'S’ below.

* line height: The sum of these three distances.



47

The Use of the Leading dimension

* We are not required to use the leading and font height
dimensions to place our strings on the screen.

* You may have a very good reason to use a different
dimension for leading that what is provided to you .
— You might want a double space effect.

 However, these are dimensions that are
'recommended by the experts.'



Doing things with fonts

We can set fonts
graphicsObject.setFont ( Font f£ )

We can find out what the current font 1s
graphicsObject.getFont ()

We can use the font

graphicsObject.drawString (
String s, int x, 1nt vy)

All of these need a graphics object
— Such as that provided with paint ()

48



Setting Fonts

* To set a font we need a Font object

» To create a Font object we will create one like any
other Java object

new Font (String fontName,
int fontStyle, 1nt fontSize)
* The Font Name 1s one of several predefined constants
* The Font Style 1s selected from 3 constants

* The Font Size 1s (roughly) the number of pixels used for the
font height

49



Font Names

» Java 1.1(Java 1.0)

— Monospaced (Courier), Dialog, Dialog Input,
SanSerif(Helvetica), Serif (Times Roman), Symbol

e MS Windows

— Courier New, MS San Serif, MS San Serif,
Arial, Times New Roman, WingDings

e Macintosh

—Courier, Geneva, Geneva, Helvetica, Times
Roman, Symbol

50



Font Styles

In the setFont method, we can set font styles:
Font.PLAIN

Bold
Font.BOLD

Italics
Font.ITALIC

Combination
Font .BOLD 4+ Font.ITALIC

51



Obtaining Font Dimensions

To get the detailed dimensions about a font we’ll get a
Font Metrics object.
— (Need a current Graphics object)

FontMetrics FM object =
graphics object.getFontMetrics (Font f);

52



53

Working with Font Metrics

* We can then get our maximum height above the base
line
FM object.getMaxAscent ()
* We can get the maximum descent below the base line

with the following method.
FM objet.getMaxDescent ()

* We can get line hight with the following method.
FM object.getHight ()



54

Finding the Width of a String

* To find the width of a string we use the
FontMetrics method stringWidth.

— We pass this method the string we want to find the length
for as 1ts argument.

FM object.stringWidth( myString )
FM object.stringWidth ("Static String")

Message

< >
Y




55

MDA LLEAITANIIT AN

DNEMIIAINYI m pixels ADINITUHAITAAIUAIN
289731 LAI138 applet ZTIRAINNAIN w pixels LA
WIUALHUIYDY x 198 drawString lapgals

\ x | n

< >

AINKIAT X LARN [X = w - m




56

EXERCISE

INERIIANNY m pixels ADINITUEAS LINA19IU
1a 3150 applet BINAIMNNING w pixels AU
ALMUIYDY x 198 drawString lapgabs




SOLUTION

Centering a String

57



String Centering Details

* Assume you have the following

— Window width, w // version dependent
— A String, msg
— Graphics object, g

— Font object, f

58



Color

Java gives us control over the color we draw things 1n

— We set the color
graphicsContext.setColor (Color c)

— We can use the pre-defined colors
Color ¢ = Color.colorName

— We can create our own
Color ¢ = new Color(...);

59



60

The pre-defined colors

black, blue, cyan, gray, dark
oray, , green,
magenta , , red,

white yellow




Creating our own colors

* On computers, we generally create colors using
three components of light.

— Our component colors are Red, and Blue.

 Note this 1s not the same as with pigment colors, where the
primary colors are Red, Blue and Yellow

» Using our light color model:
— Black 1s the absence of any of the three colors.

— White 1s the presence of all three at full intensity

61



The Three Primary Colors

Red Light Blue Light
Red Color 100% 0% 0%
0% 0%

Blue Color 0% 0% 100%

62



63

Variations of the Primary Colors

Red Light Blue Light
Medium Red Color75% 0% 0%

Dark Green Color 0% 50% 0%
Navy Blue Color 0% 0%  25%

« All other colors can be obtained by are combinations of the
these basic three colors 1n various proportions and
Intensities.

e (Qray 1s an equal proportion of all three colors at an intensity
somewhere between white (100%) and black (0%).



Specifying New Colors

Color myColor = new Color (

 Three forms:

Color ( float red fraction,

float ’
float blue fraction)

where the fraction 1s from 0.0 to 1.0

Color ( int red part, int
int blue part)

where the values are from 0 to 255
Color (int RGRvalue)

RGBvalue = red_part * 256 * 256 +
green_part*256 + blue_part

64



Changing Colors

Color.darker ()
Color.brighter ()

e We can even combine these:

Color.darker () .darker () .darker () ;

Color.darker () .brighter ()

65



66

Java Applets

Java applets provide for client-side programming

= compiled into Java byte code, then downloaded as part of a Web
page
= executed by the JVM embedded within the Web browser

= unlike JavaScript, Java is full-featured with extensive library
support

= Java and its APIs have become industry standards
>the language definition is controlled by Sun, ensures
compatibpility
> Applications Programming Interfaces standardize the
behavior of useful classes and libraries of routines



67

Java Applets (cont.)

iImportant point: Java applets & applications look different!

=if you want to define a stand-alone application, make an application
requires public static void main method

=if you want to embed the code in a Web page, make an applet
requires public void paint,public void init,...

=can define dual-purpose programs, but tricky



First Java applet

import java.awt.*;

import java.applet.*;

/**

* This class displays "Hello world!" on the applet window.

*/
public class HelloWorld extends Applet

{

public void paint (Graphics q)

{
g.drawString ("Hello world!", 10, 10); // writes string at

(10,10)

libraries: Java provides extensive library support in the form of classes
= libraries are loaded using import
java.awt : contains Abstract Window Toolkit (for GUI classes & routines)
java.applet: contains the applet class definition

73




First Java applet

import java.awt.*;

import java.applet.*;

/**

* This class displays "Hello world!" on the applet window.
*/

public class HelloWorld extends Applet

{
public void paint (Graphics qg)

{
g.drawString ("Hello world!"™, 10, 10); // writes string at

}

(10,10)

all applets inherit from the Applet class (in java . applet)

default methods include:
» init () : called when page is loaded to create/initialize variables

by default, does nothing
» paint (Graphics g) : called to draw (after init) or redraw (after being obscured)

here, the paint method is overridden to display text on the applet window

74



Embedding an applet in HTML

to include an applet in a Web page, use either

= APPLET tag (deprecated)
CODE specifies applet name, HEIGHT and WIDTH specify window size
text between the APPLET tags is displayed if unable to execute (e.g., Java not enabled)

= OBJECT tag
preferred for HTML 4, but not universally supported

<html>

<head>
<title>Hello World Page</title>

</head>

<body>
<applet code="HelloWorld.class" height="100" width="100">

You must use a Java-enabled browser to view this applet.

</applet>

</body>

</html>

view page in browserat http://is311.bus.tu.ac.th/examples/applet/dsl.html

75



Applet parameters

import Jjava.awt.*;
import Java.applet.*;
// This class displays a message based on parameters.
public class HelloWorldl extends Applet
{
public void paint (Graphics q)
{

String userName = getParameter ("name");
int userAge = Integer.parselnt (getParameter ("age"));
String messagel = "Hello " + userName + ".";

String messageZ = "On your next birthday, you will be " +

(userAge+l) + " vyears old.";
g.drawString (messagel, 10, 10);
g.drawString (message?2, 10, 30);

can access parameters passed in from the HTML document
getParameter accesses the value of the parameter (must know its name)
= if the parameter represents a number, must parseInt Or parseFloat m




Parameters in HTML

<html>

<head>

<title>Hello World with parameters Page</title>

</head>

<body>

<applet code="HelloWorldl.class" height=35 width=300>
<param name="name" value="Chris">
<param name="age" value="20">

</applet>
</body>
</html>

You must use a Java-enabled browser to view this applet.

can specify parameters to the APPLET when it is embedded in HTML

» each parameter must have its own PARAM tag inside the APPLET element
* specifies parameter name and value

view page in browserat http://is311.bus.tu.ac.th/examples/applet/ds2.html

78



